什么是最小二乘法及其原理?
的有关信息介绍如下:最小二乘法(又称最小平方法)是一种数学优化技术。
它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。
最小二乘法来自还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。
原理:
在我们研究两个变量(x,y)之间的相互关系时,通常可以得到一系列成对的数据(x1,y1.x2,y2...360问答xm,ym);将这些数据描绘在x-y直角坐标系中,若发黄功兵现这些点在一条直线确阿冷村附近,可以令这条直线方程如(式业乡敌1-1)。
(式1-1)
其中府是福快来病行思:a0、a1是任意实数
为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用计算值Yj(Yj=a0+a1Xi)(式1-1)的离差(Yi-Yj)的平方和 最小为“优化判据”。
令:φ= (式1-2)
把(式1-1士将回种米板知每雷)代入(式1-2)中得:
φ= (式1-3)
当 最小时烟切,可用函数φ对a0、a1求偏导数,令这两个偏导数等于零。
∑2(a0+a1*Xi-Yi)=0(式1-4)
∑2Xi(a0+a1*Xi-Yi)=0(式1-5)
亦即:na0+(∑Xi)a1=∑Yi(式1-6)
(∑Xi)a0+(∑Xi^2)a1=∑(Xi*Yi)(式1-7)
得到的两个关于a0、a1为未知数的两个方程组,解这两个方程组得出:
a0=(∑Yi)/n-a1(∑无兵脚土喜皇干那Xi)/n(式1-8)
a1=[n∑(XiYi)-(∑Xi∑Yi)]/(n∑Xi发更了句亮控用成重注^2-∑Xi∑Xi)(式1-9)
这时把a0、a1代入(式1-1)中,此时的(式1-1)就是我们回归的一元线性方程即:数学切是践刑形转前模型。
在回归过程中,回归的关联胡相白械式不可能全部通过每个回归数据点(x1,y1.x2,y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标多湖投统元文广慢村节准偏差“S”进行判断;“R”越趋近于1越好;“F”的绝对值越大越好;“S”越趋近于0越好。
R=[∑XiYi-黄他m(∑Xi/m)(∑Yi/m)担黄似又斗]/SQR{[∑Xi2-m(∑Xi/m)2][∑Yi2-m(∑Yi/m)2]}(式1-10)*
在(式1-10)中,m为或担倒样本容量,即实验次数;Xi、Yi分别为任意一组实验数据X、Y的数值。
以最简单的一元周策钱东念松酸压线性模型来解释最小二乘法。
什么是一元线性模型呢?监督学习照品南足中,如果预测的变量是省茶众角敌离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归。回归分析中,如果只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两担价两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。对于二维空间线性是一条直线;对于三维空间线性是一个平面,对于多维空间线性是一个超平面。