一元三次方程的公式解
的有关信息介绍如下:一元三次方程aX^3+bX^2+cX+d=0,(a,b,c,d∈R,且a≠0)。
重根判别式:A=360问答b^2-3ac;B甚良践同声激适就技称=bc-9ad;C=c^2-3bd,
总判别式:Δ=B^2-4AC。
当A=B=0时,盛金公式①:
X⑴=X⑵=X⑶=失谓-b/(3a)=-c/b=-3d/品证确星垂c。
当Δ=B^2-4AC>0时,盛金公知织势教谓足逐找式②:
X⑴=(-b-Y达早盟单每卷步持川吧⑴^(1/3)-Y⑵^(1/3))/(3a);
X(2,3)=(-2b+Y⑴^(1/3)+Y⑵^行身谓(1/3))/(6a)±i3^(1/2)(Y⑴^(1/3)-Y⑵^(1/3))/(6a);
其中Y(1,2)=Ab+3a(-B±(B^2-4AC)^(1/2))/2,i^2=-1。
当Δ=B^2-4AC=0时,盛金公式③:
X⑴=-b/a+K;X⑵=X3=-K/2,
其中K=B/A,(A≠0)。
当Δ=B^2-4AC<0时,补抓较亲香气盛金公式④:
X⑴=(-b-2A^(1/2)cos(θ/3))/(3a);
X(2,3)=(垂每轻商冲普-b+A^(1/2)(cos(θ/3)±3^(1/2)sin(θ/3)))/(3a);
其中θ=arccosT,T孩纪章路如=(2Ab-3aB)/(2A^(3/2)),(A>0,-1<T<1)
①:当A=B=0时,方程有一个三重实根;
②:当Δ=B^2-4A慢拉连甚老溶技C>0时,方程有一个实根和一对共轭虚根;
③:当Δ=B^2-4AC=0时,方程有三个实根,其中有一个两重根;
④:当Δ=B^2-4AC<0时,方程有三个不相等的实根。