您的位置首页生活百科

三次函数图像

三次函数图像

的有关信息介绍如下:

三次函数图像

一.【基本概念与性质】

形如y=ax^3+bx^2+cx+d(a≠0,b,c,d为常数)的函数叫做三次函数。

三次函数的图像是一条曲线----回归式抛物线(不同于普通抛物线),具有比较特殊性。

函数y=f(x)=ax^3+px,其中p=(3ac-b^2)/(3a)的函数图像向上平移(2b^3+27da^2-9abc)/(27a^2)个单位,在向左平移b/(3a)个单位可得函数y=ax^3+bx^2+cx+d。

这里以f(x)=ax^3+px为例,其它复杂的三次函数皆可平移成此形式,且一般只会出现在应用方面,可忽略。

函数f(x)=ax^3+px的顶点最多有2个,这里只探讨偏右的一个。

*当ap≤0时,顶点坐标为[(-3ac)^(0.5)/(3a),2b(-3ac)^(0.5)/(9a)]

*当ap≥0时,顶点与伪顶点重合,为(0,0)

二.【零点求法】

求函数的零点可用盛金公式:盛金公式或传统解法

盛金公式与盛金判别法及盛金定理的运用从这里向您介绍

三次方程应用广泛。用根号解一元三次方程,虽然有著名的卡尔丹公式,并有相应的判别法,但使用卡尔丹公式解题比较复杂,缺乏直观性。范盛金推导出一套直接用a、b、c、d表达的较简明形式的一元三次方程的一般式新求根公式,并建立了新判别法。

1.【盛金公式】

一元三次方程aX3+bX2+cX+d=0,(a,b,c,d∈R,且a≠0)。

重根判别式:

A=b2-3ac;

B=bc-9ad;

C=c2-3bd,

总判别式:Δ=B2-4AC。

当A=B=0时,盛金公式①:

X1=X2=X3=-b/(3a)=-c/b=-3d/c。

当Δ=B2-4AC>0时,盛金公式②:

X1=(-b-(Y11/3+Y21/3))/(3a);

X2,3=(-2b+Y11/3+Y21/3±31/2

(Y11/3-Y21/3)i)/(6a);

其中Y1,2=Ab+3a

(-B±(B2-4AC)1/2)/2,i2=-1。

当Δ=B2-4AC=0时,盛金公式③:

X1=-b/a+K;X2=X3=-K/2,

其中K=B/A,(A≠0)。

当Δ=B2-4AC0,-1