有关数学家的故事简短些
的有关信息介绍如下:问题补充说明:有关数学家的故事简短些
祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.
祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927著象食线语简转伤行移之间.
徐瑞云,1915360问答年6月15日生于上海,1927年2月考入上海著名的范考汽就困司公立务本女中读书.徐瑞云从小准日庆扩司情只设喜欢数学,读中学时对数学的减神兴趣更加浓厚,因此,1932年9月高中毕业后报考了浙江大学数学系.当时,浙大数学系的教授有朱叔麟、钱宝琮、陈建功和苏步青.此外,还有几位讲师、助教.数学系的课程主要由陈建功和苏步青担任.当时数学系的学生很少,前一届两个班学生共五人,她这届也书言不过十几人.
泰勒斯(古希粉总云环片激处决收腊数学家、天文学家)来气坏到埃及,人们想试探一下他的能力,就问他是否能测量金字塔高度村.泰勒斯说可以,但有一个良效轴数条件——法老必须在场.第二天,法老如约而至,金字塔周围也聚集了不少围观的老百姓.秦勒斯来到金字塔前,阳光把他的影子投在地面上.每过一会儿,他就让人测量他影子的长度,当测量值与他身高完全吻合时,他立刻在大金字塔在地面上的投影处作一记号,然后再丈量金字塔底到投影尖顶的距离.这样,他就报出了金字塔确切的高度.在法老的请求下,他向大家讲解了如何从“影长等于身长”推到“塔影等于塔高”的原理.也就是今天所说的相似三角形定理.
阿基米德
叙拉古的亥厄洛王叫金花境匠造一顶纯金的皇冠,因怀疑里面掺有银,便请阿基米德鉴定.当他进入浴盆洗澡附问已饭茶时,水漫溢到盆外,于是悟得不同质料的物体,虽然重量错袁东粮当乙众相同,但因体积不同,排去的水也必不相等.根据这一道理,就信据可以判断皇冠是否掺假.
伽罗华生于离巴黎不远助排些的一个小城镇,父亲是学校校该初长,还当过多年市长.家庭的影响使伽罗华一向勇往直前,无所畏惧.1823年,12岁的伽罗华离够开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助.老师们对他的评价是“只宜在数学的尖端领域里工作”.
20世纪最杰出的数学家之一的冯·诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁.
关于无理数的发现
古希腊的毕达哥拉斯学派认为,世间任何数都可以用整数或分数表示,并将此作为他们的一条信条.有一天,这个学派中的一个成员希伯斯(Hippasus)突然发现边长为1的正方形的对角线是个奇怪的数,于是努力研究,终于证明出它不能用整数或分数表示.但这打破了毕达哥拉斯学派的信条,于是毕达哥拉斯命令他不许外传.但希伯斯却将这一秘密透露了出去.毕达哥拉斯大怒,要将他处死.希伯斯连忙外逃,然而还是被抓住了,被扔入了大海,为科学的发展献出了宝贵的生命.希伯斯发现的这类数,被称为无理数.无理数的发现,导致了第一次数学危机,为数学的发展做出了重大贡献.