您的位置首页百科知识

“拉格朗日中值定理”如何运用?

“拉格朗日中值定理”如何运用?

的有关信息介绍如下:

“拉格朗日中值定理”如何运用?

g(x)=e^x-ex

g(x)在[1,x]连续,在(1,x)可导

所以由拉格朗日中值定理

存在w∈(1,x),使得g'(w)=(g(x)-g(1))/(x-1)

e^w-e=(e^x-ex)/(x-1)

即e^x-ex=(x-1)*(e^w-e)

此时x>1且w>1所以(x-1)*(e^w-e)>0

即e^x-ex>0;e^x>ex成立

拉格朗日中值定理又称拉氏定理,是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形。如果函数f(x)在(a,b)上可导,[a,b]上连续,则必有一ξ∈(a,b),使得f'(ξ)*(b-a)=f(b)-f(a),拉格朗日中值定理的几何意义。