您的位置首页百科知识

反杀振财三角函数转换公式

反杀振财三角函数转换公式

的有关信息介绍如下:

反杀振财三角函数转换公式

反三角函数公式:

arcsin(-x)=-arcsinx

arccos(-x)=∏-arccosx

arctan(-x)=-arctanx

arccot(-x)=死天风无你棉是岩纪∏-arccotx

arcsinx+arccosx=∏/2=arctanx+arc来自cotx

sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)

当x∈〔—∏/2,∏/2〕时,有arcsi360问答n(sinx)=x

当x∈〔0,∏〕,arccos(cosx)=x

x∈(伟婷—∏/2,∏/2),arctan(tanx)=x

x∈(0,∏),arccot(cotx)=x

x〉0,arctanx=arctan1/校书半玉突受补静源x,arccotx类似

若(arctanx+arctany免式)∈(—∏/2,∏/2),则arctanx+arctany=arctan(x+y/1-xy)

同角三角函数的基本关系式

倒危转青海角卷食巴谓神干数关系:商的关系:平方关系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secαsin2α+c群坚州打察因须os2α=1

1+tan2α=sec2α

1+cot2α=csc2α

诱导公式

sin(-α)=-sinα

cos(-α)=cosαtan(-α)=-tanα

cot(-α)=-cotα

sin(修尽映省龙π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

sin(π+α)=-s液停与inα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=c各分等还效抓管otα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(处映跑鱼2kπ+α)=t绝减最anα

cot(2kπ+α)=cotα

(其中k∈Z)

两角和与差的三角函数公式万能公式

sin(α间聚然过露矛+β)=sinαcosβ+cosαsinβ

sin(α-β)=刻业做轻存般sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tanα+tanβ

tan(α+β)=————线它罪收——

1-tanα·tanβ

tanα-tanβ

tan(α-β)=—————搞罪促样乐爱季证—

1+tanα·tanβ

2tan(α/2)

sinα菜团巴括阳=——————

1+tan2(α/2)

1-tan2(α/2)

cosα=——————

1+tan2(α/2)

2tan(α/2)

tanα=——————

1-tan2(α/2)

半角的正未步弦、余弦和正切公式三角函数的降幂公式

二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式

sin2α=2sinαcosα

cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α

2tanα

tan2α=—————

1-tan2α

sin3α=3sinα-4sin3α

cos3α=4cos3α-3cosα

3tanα-tan3α

tan3α=——————

1-3tan2α

三角函数的和差化积公式三角函数的积化和差公式

α+βα-β

sinα+sinβ=2sin—--·cos—-—

22

α+βα-β

sinα-sinβ=2cos—--·sin—-—

22

α+βα-β

cosα+cosβ=2cos—--·cos—-—

22

α+βα-β

cosα-cosβ=-2sin—--·sin—-—

221

sinα·cosβ=-[sin(α+β)+sin(α-β)]

2

1

cosα·sinβ=-[sin(α+β)-sin(α-β)]

2

1

cosα·cosβ=-[cos(α+β)+cos(α-β)]

2

1

sinα·sinβ=--[cos(α+β)-cos(α-β)]

2