您的位置首页百科问答

二次函数的所有性质

二次函数的所有性质

的有关信息介绍如下:

二次函数的所有性质

二次函数

I.定义与定义表达式

一般地,自变量x和因变量y之间存在如下关系:

y=ax²+bx+c(a,b,c为常数,a≠0)

则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式

一般式:y=ax²+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)²+k[抛物线的顶点P(h,k)]

交点式:y=a(x-x1)(x-x2)[仅限于与x轴有交点A(x1,0)和B(x2,0)审就天细证府斗的抛物线]

注:在3种形式的互相转化中,有如下关系:

h=-b/2ak=(4ac-b²)/4ax1,x2=(-b±√b²-4ac)/2a

III.二次函数的图象

在平面时齐清作也验价回直角坐标系中作出二次函数y=x²的图象,

可以看出,二次函数的图象是一条抛物线。

IV.抛物线的性质

1.抛物线是轴对称图形。对称轴为直线

x=-b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为

P[-b/2a,(4ac-b²)/4a]。

来自-b/2a=0时,P在y轴上;当Δ=b²-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

杆轻因加牛皇察世井应当a与b异号时(即ab<0),对称轴在y轴右。

360问答5.常数项c决定抛物线与y轴银乎交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数

Δ=b²-4ac>0时,抛物线与x轴有2个交点。

Δ=b²-4ac=0时,抛物线与x轴有1个部到语采临史精关板交点。

Δ=b²-4ac<0时,应加名须力抛物线与x轴没有交点。

V.二次函数与一元二次方程

特别地,二次函数(以下称函数)y=ax²+bx+c,

当y=0时,二次函数为关于x的一元二次方程(以下称方程),

即ax促大色²+bx+c=0

此时,函数图象与x轴有无交点即方程有无实数根。

函数与x轴交点的横坐标即为方程的根。