您的位置首页百科知识

分解质因数的方法与技巧

分解质因数的方法与技巧

的有关信息介绍如下:

分解质因数的方法与技巧

分解质因数的方法和技巧有两种:1、相乘法,写成几个质数相乘的形式(这些不重复的质数即为质因数),实际运算时可采用逐步分解的方式如:36=2*2*3*3运算时可逐步分解写成36=4*9=2*2*3*3或3*12=3*2*2*3。2、短除法,从最小的质数除起,一直除到结果为质数为止。分解质因数的算式的叫短除法。

例1、一块正方体木块,体积是1331立方厘米。这块正方体木块的棱长是多少厘米?(适于六年级程度)

解:把1331分解质因数:

1331=11×11×11

答:这块正方体木块的棱长是11厘米。

例2、一个数的平方等于324,求这个数。(适于六年级程度)

解:把324分解质因数:

324=2×2×3×3×3×3

=(2×3×3)×(2×3×3)

=18×18

答:这个数是18。

例3、相邻两个自然数的最小公倍数是462,求这两个数。(适于六年级程度)

解:把462分解质因数:

462=2×3×7×11

=(3×7)×(2×11)

=21×22

答:这两个数是21和22。

例4、 ABC×D=1673,在这个乘法算式中,A、B、C、D代表不同的数字,ABC是一个三位数。求ABC代表什么数?(适于六年级程度)

解:因为ABC×D=1673,ABC是一个三位数,所以可把1673分解质因数,然后把质因数组合成一个三位数与另一个数相乘的形式,这个三位数就是ABC所代表的数。

1673=239×7

答:ABC代表239。