您的位置首页百科知识

因来自式分解的方法与技巧

因来自式分解的方法与技巧

的有关信息介绍如下:

因来自式分解的方法与技巧

⑴提公因式法

①公因式:各项都含有的公共的因式叫做这个多项式各项的~.

②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.

am+bm+cm=m(a+b+c)

③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约市有联九得亲制简律数;字母取各项的相同的字母,而且各字母的指数取次数最低的.如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.

⑵运用公式法

①平方差公式:.a^2-b^2=(a+b)(a-b)

②完全平方公式:a^2±2ab+b^2种部士=(a±b)^2

※能运用建亮斯厂行试检业型么如完全平方公式分解因式的多扩某补任令啊神项式必须是三项式,其中有两项能写成两个数(或式)的平方和的护由传世比形式,另一项是这两个数(或语王顶的式)的积的2倍.

③立方选各意企跑屋层奏和公式:a^3+b^3=(a+传校每站件另鱼席功持b)(a^2-ab+b^2).

立方差公式:a^3-b^3=(a-b)(a^2+当初善沿等日ab+b^2).

④完全立方跳帝果等公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3

⑤a^n-b^n=(a-b)【a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)】

a^m+b^m=(a+b)【a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)】(m为奇数)

⑶分组分解法

分组分解法:把一个多项式分组后,再进行分解因式的方法.

分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式.

⑷拆项、补项法

拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行所起翻转尔分解;要注意,必须在与原多项式却品积办相等的原则进行变形.

⑸十字相乘法

①x^2+(pq)x+pq型的式子的因式分解

这类二次三项式的特点是:二次项的系搞培数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分请草示以历想味让胜汽假解:x^2+(pq)x+pq=(x+p)(x+q)

②kx^2+mx+n型的式子的因式分解

如果能够分解成k=ac,n=bd,且有ad+bc=m时,那么

kx^2+mx+n=(axb)(cxd)

a\-----/bac=kbd=n

c/-----\dad+bc=m

※多项式因式分解的一般步骤:

①如果多项式的各项有公因式,那么先提公因式;

②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;

④分解因式,必须进行到每一个多项式因式殖沿袁林村别本晚表都不能再分解为止.

(6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式。

经典例题:

1.分解因式(1+y)^2-2x^2(1+y好往兴试育万^2)+x^4(1-y)^2

解:原式=(1+y)^2+2(1+y)x^2(1+y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)

=【(1+y)+x^2(1-y)】^2-2(1+y)x^2(1-y)-2x^2(1+y^2)

=【(1+y)+x^2(1-y)】^2-(2x)^2

=【(1+y)+x^2(1-y)+2x】·【(1+y)+x^2(1-y)-2x】

=(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1)

=【(x+1)^2-y(x^2-1)】【(x-1)^2-y(x^2-1)】

=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y)

2.证明:对于任何数x,y,下式的值都不会为33

x^5+3x^4y-5x^3y^2+4xy^4+12y^5

解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5)

=x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)

=(x+3y)(x^4-5x^2y^2+4y^4)

=(x+3y)(x^2-4y^2)(x^2-y^2)

=(x+3y)(x+y)(x-y)(x+2y)(x-2y)

当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立

因式分解的十二种方法

把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下:

1、提公因法

如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。

例1、分解因式x-2x-x(2003淮安市中考题)

x-2x-x=x(x-2x-1)

2、应用公式法

由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。

例2、分解因式a+4ab+4b(2003南通市中考题)

解:a+4ab+4b=(a+2b)

3、分组分解法

要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)

例3、分解因式m+5n-mn-5m

解:m+5n-mn-5m=m-5m-mn+5n

=(m-5m)+(-mn+5n)

=m(m-5)-n(m-5)

=(m-5)(m-n)

4、十字相乘法

对于mx+px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)

例4、分解因式7x-19x-6

分析:1-3

72

2-21=-19

解:7x-19x-6=(7x+2)(x-3)

5、配方法

对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。

例5、分解因式x+3x-40

解x+3x-40=x+3x+()-()-40

=(x+)-()

=(x++)(x+-)

=(x+8)(x-5)

6、拆、添项法

可以把多项式拆成若干部分,再用进行因式分解。

例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)

解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)

=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)

=c(c-a)(b+a)+b(a+b)(c-a)

=(c+b)(c-a)(a+b)

7、换元法

有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。

例7、分解因式2x-x-6x-x+2

解:2x-x-6x-x+2=2(x+1)-x(x+1)-6x

=x【2(x+)-(x+)-6

令y=x+,x【2(x+)-(x+)-6

=x【2(y-2)-y-6】

=x(2y-y-10)

=x(y+2)(2y-5)

=x(x++2)(2x+-5)

=(x+2x+1)(2x-5x+2)

=(x+1)(2x-1)(x-2)

8、求根法

令多项式f(x)=0,求出其根为x,x,x,……x,则多项式可因式分解为f(x)=(x-x)(x-x)(x-x)……(x-x)

例8、分解因式2x+7x-2x-13x+6

解:令f(x)=2x+7x-2x-13x+6=0

通过综合除法可知,f(x)=0根为,-3,-2,1

则2x+7x-2x-13x+6=(2x-1)(x+3)(x+2)(x-1)

9、图象法

令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x,x,x,……x,则多项式可因式分解为f(x)=f(x)=(x-x)(x-x)(x-x)……(x-x)

例9、因式分解x+2x-5x-6

解:令y=x+2x-5x-6

作出其图象,见右图,与x轴交点为-3,-1,2

则x+2x-5x-6=(x+1)(x+3)(x-2)

10、主元法

先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。

例10、分解因式a(b-c)+b(c-a)+c(a-b)

分析:此题可选定a为主元,将其按次数从高到低排列

解:a(b-c)+b(c-a)+c(a-b)=a(b-c)-a(b-c)+(bc-cb)

=(b-c)【a-a(b+c)+bc】

=(b-c)(a-b)(a-c)

11、利用特殊值法

将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。

例11、分解因式x+9x+23x+15

解:令x=2,则x+9x+23x+15=8+36+46+15=105

将105分解成3个质因数的积,即105=3×5×7

注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值

则x+9x+23x+15=(x+1)(x+3)(x+5)

12、待定系数法

首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。

例12、分解因式x-x-5x-6x-4

分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。

解:设x-x-5x-6x-4=(x+ax+b)(x+cx+d)

=x+(a+c)x+(ac+b+d)x+(ad+bc)x+bd

所以解得

则x-x-5x-6x-4=(x+x+1)(x-2x-4)